Solid State Quantum Optics Lab
Publications
Journal papers
(inverse chronological order)
(53) C. M Arachchige and A. Muller, "Portable Raman hydrogen concentration mapping with parts-per-billion sensitivity",
(52) C. M. Arachchige and A. Muller, "Raman scattering applied to human breath analysis", .
(51) A. Muller, "High-power diode laser spectrally narrowed with prism–etalon feedback", .
(50) J. Singh, D. Dodd, T. Evans-Nguyen and A. Muller, “Trace Analysis of C4F7N Insulating Gas Mixtures by Spontaneous Raman Spectroscopy and Gas Chromatography”, .
(49) C. M. Arachchige and A. Muller, “Narrow-Linewidth Pr:YLF Laser for High-Resolution Raman Trace Gas Spectroscopy”, .
(48) J. Singh and A. Muller, “High-Precision Trace Hydrogen Sensing by Multipass Raman Scattering”, .
(47) J. Singh and A. Muller, “Ambient Hydrocarbon Detection with an Ultra-Low-Loss Cavity Raman Analyzer”, .
(46) J. Singh and A. Muller, “Isotopic trace analysis of water vapor with multipass cavity Raman scattering”, .
(45) A. Biswas, S. Moka, A. Muller, and A. B. Parthasarathy, “Fast diffuse correlation spectroscopy with a low-cost, fiber-less embedded diode laser”, .
(44) J. Gomez Velez and A. Muller. “Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity”, .
(43) G. S. Solomon, A. Muller, and E. Flagg, “Chapter seven – quantum light from optically dressed quantum dot states in microcavities,” in .
(42) Y. Nieves and A. Muller, “Third-order photon cross-correlations in resonance fluorescence”, .
(41) J. Gomez Velez and A. Muller, “Trace gas sensing using diode-pumped collinearly detected spontaneous Raman scattering enhanced by a multipass cell”, .
(40) Y. Nieves and A. Muller, “Third-order frequency-resolved photon correlations in resonance fluorescence”, .
(39) K. Konthasinghe, J. Gomez Velez, M. Peiris, Y. Nieves, L. T. M. Profeta, and A. Muller, “Dynamics of light-induced thermomechanical mirror deformations in high-finesse Fabry–Perot microresonators”, .
(38) J. Gomez Velez and A. Muller, “Purcell-enhanced microcavity Raman scattering from pressurized gases”, .
(37) M. Peiris, K. Konthasinghe, and A. Muller, “Franson Interference Generated by a Two-Level System”, .
(36) K. Konthasinghe, J. Gomez Velez, A. J. Hopkins, M. Peiris, L. T. M. Profeta, Y. Nieves, and A. Muller, “Self-sustained photothermal oscillations in high-finesse Fabry-Perot microcavities”, .
(35) B. Petrak, J. Cooper, K. Konthasinghe, M. Peiris, N. Djeu, A. J. Hopkins, and A. Muller, “Isotopic gas analysis through Purcell cavity enhanced Raman scattering”, .
(34) K. Konthasinghe, M. Peiris, B. Petrak, Y. Yu, Z. C. Niu, and A. Muller, “Correlations in Pulsed Resonance Fluorescence”, .
(33) M. Peiris, B. Petrak, K. Konthasinghe, Y. Yu, Z. C. Niu, and A. Muller, “Two-Color Photon Correlations of the Light Scattered by a Quantum Dot”, .
(32) B. Petrak, M. Peiris, and A. Muller, “Solid Optical Ring Interferometer for High-Throughput Feedback-Free Spectral Analysis and Filtering”, .
(31) K. Konthasinghe, K. Fitzmorris, M. Peiris, A. J. Hopkins, B. Petrak, D. K. Killinger, and A. Muller, “Laser-Induced Fluorescence from N2+ Ions Generated by a Corona Discharge in Ambient Air”, .
(30) B. Petrak, N. Djeu, and A. Muller, “Coherent Anti-Stokes Raman Scattering in a High-Finesse Microcavity”, .
(29) K. Konthasinghe, M. Peiris, and A. Muller, “Resonant light scattering of a laser frequency comb by a quantum dot”, .
(28) M. Peiris, K. Konthasinghe, Y. Yu, Z. C. Niu, and A. Muller, “Bichromatic Resonant Light Scattering from a Quantum Dot”, .
(27) B. Petrak, N. Djeu, and A. Muller, “Purcell Enhanced Raman Scattering from Atmospheric Gases in a High-Finesse Microcavity”, .
(26) K. Konthasinghe, M. Peiris, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni, Z. C. Niu, C. K. Shih, and A. Muller, “Field-Field and Photon-Photon Correlations of Light Scattered by Two Remote Two-Level InAs Quantum Dots on the Same Substrate”, .
(25) G. Zhao, Y. Zhang, D. G. Deppe, K. Konthasinghe, and A. Muller, “Buried heterostructure vertical-cavity surface-emitting laser with semiconductor mirrors”, .
(24) K. Konthasinghe, J. Walker, M. Peiris, C. K. Shih, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni, Z. C. Niu, and A. Muller, “Coherent versus Incoherent Light Scattering from a Quantum Dot”, .
(23) B. Petrak, K. Konthasinghe, S. Perez, and A. Muller, “Feedback-controlled laser fabrication of micromirror substrates”, .
(22) S. V. Polyakov, A. Muller, E. B. Flagg, A. Ling, N. Borjemscaia, E. Van Keuren, A. L. Migdall, and G. S. Solomon, “Coalescence of Single Photons Emitted by Disparate Single-Photon Sources: The Example of InAs Quantum Dots and Parametric Down-Conversion Sources”, .
(21) M. Metcalfe, S. Carr, A. Muller, G. S. Solomon, and J. Lawall, “Resolved sideband emission from dynamically strained quantum dots”, .
(20) A. Muller, E. B. Flagg, J. Lawall, and G. S. Solomon, “Ultrahigh finesse Fabry-Perot microcavity with small mode volume”, .
(19) E. B. Flagg, A. Muller, S.V. Polyakov, A. Ling, A. L. Migdall, and G. S. Solomon, “Two-Photon Interference from Separate Quantum Dots”, .
(18) A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity”, .
(17) M. Metcalfe, A. Muller, G. S. Solomon, and J. Lawall, “Active feedback of a Fabry-Perot cavity to the emission of a single InAs/GaAs quantum dot”, .
(16) A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Creating Polarization-Entangled Photon Pairs from a Semiconductor Quantum Dot Using the Optical Stark Effect”, .
(15) A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot”, .
(14) T. Tran, A. Muller, C. K. Shih, P. S. Wong, G. Balakrishnan, N. Nuntawong, J. Tatebayashi, and D. L. Huffaker, “Single dot spectroscopy of site-controlled InAs quantum dots nucleated on GaAs nanopyramids”, .
(13) E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, C. K. Shih, "Resonantly driven coherent oscillations in a solid-state quantum emitter", .
(12) A. Muller, E. B. Flagg, P. Bianucci, X. Y. Wang, D. G. Deppe, W. Ma, J. Zhang, G. J. Salamo, M. Xiao, and C. K. Shih, “Resonance Fluorescence From a Coherently-Driven Semiconductor Quantum Dot in a Cavity”, .
(11) A. Muller, D. Lu, J. Ahn, D. Gazula, S. Quadery, S. Freisem, D.G. Deppe and C.K. Shih, “Buried All-Epitaxial Microcavity for Cavity-QED with Quantum Dots”, . See also: research highlight, .
(10) Q.Q. Wang, A. Muller, M.T. Cheng, H.J. Zhou, P. Bianucci, and C.K. Shih, “Internal and external polarization memory loss in single quantum dots”, .
(9) A. Muller, C.K. Shih, J. Ahn, D. Gazula, and D.G. Deppe, “High Q (33 000) all-epitaxial microcavity for quantum dot vertical-cavity surface-emitting lasers and quantum light sources”, .
(8) J. W. Keto, M. E. Becker, D. Kovar, G. Malyavanatham, A. Muller, D. T. O'Brien, C. K. Shih, J. Wang, “Nanoparticles of Er-doped glass produced by laser ablation of microparticles”, .
(7) A. Muller, C.K. Shih, J. Ahn, D. Lu, and D.G. Deppe, “Isolated single quantum dot emitters in all-epitaxial micro-cavities”, .
(6) A. Muller, P. Bianucci, C. Piermarocchi, M. Fornari, I.C. Robin, R. André, and C.K. Shih, “Time-Resolved Spectroscopy of Individual Impurity Centers in ZnSe”, .
(5) Q.Q. Wang, A. Muller, M.T. Cheng, H.J. Zhou, P. Bianucci, and C.K. Shih, “Coherent Control of a V-Type Three-Level System in a Single Quantum Dot”, .
(4) Q.Q. Wang, A. Muller, P. Bianucci, C.K. Shih, and Q.K. Xue, “Quality factors of qubit rotations in single semiconductor quantum dots”, .
(3) Q.Q. Wang, A. Muller, P. Bianucci, E. Rossi, Q. K. Xue, T. Takagahara, C. Piermarocchi, A.H. MacDonald, and C.K. Shih, “Decoherence processes during optical manipulation of excitonic qubits in semiconductor quantum dots”, .
(2) P. Bianucci, A. Muller, Q.Q. Wang, C. Piermarocchi, and C.K. Shih, “Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot”, .
(1) A. Muller, Q.Q. Wang, P. Bianucci, C.K. Shih and Q.K. Xue, “Determination of anisotropic dipole moments in self-assembled quantum dots using Rabi oscillations”, .